
<2022-01-06 Do> Dr. Arne Babenhauserheide / draketo.de

Emacs Tipps & Tricks

Emacs is the Program I live in.

I don’t use Emacs for everything, because it is not best for everything, but any tool that
cannot be integrated with Emacs requires considerably more context switches than if it
can be integrated.

Also see the org-mode tipps. Org-mode is what binds Emacs together for me.

Other larger topics have their own articles:

• Emacs for Javascript development — it keeps up on the raw coding part, and
the integration turns it into the best tool. Jumping from the org-mode planning
document into the code project and back knows no equal.

• What I need from IntelliJ and what I miss when not using Emacs — why I don’t
(yet?) use Emacs for Java development.

Contents

Initialize use-package

This is the basis for most of the setups here. Put it into $HOME/.emacs.de/init.el

(require 'package)
(add-to-list 'package-archives '("melpa" . "https://melpa.org/packages/") t)
;; Comment/uncomment this line to enable MELPA Stable if desired. See `package-archive-priorities`
;; and `package-pinned-packages`. Most users will not need or want to do this.
;;(add-to-list 'package-archives '("melpa-stable" . "https://stable.melpa.org/packages/") t)
(package-initialize)
;; This is only needed once, near the top of the file
(eval-when-compile

;; Following line is not needed if use-package.el is in ~/.emacs.d
(add-to-list 'load-path "<path where use-package is installed>")
(require 'use-package))

1/20

https://www.draketo.de
org-mode-tipps.org
emacs-javascript.org
intellij-emacs.org

Simple EXWM setup

EXWM is a window manager running in Emacs. It’s actually awesome to work in it,
though it still has some rough edges.

I started using exwm seriously when Gnome Shell killed my keyboard layout once
too often while switching users and Chromium corrupted its shortcuts when I set my
keyboard layout again. Now exwm is my regular work environment.

I’m typing this from my Emacs running exwm.

Setup (needs Initialize use-package):

;;; Setup EXWM
(use-package exwm :ensure t

:config
;; Allow resizing with mouse, of non-floating windows.
(setq window-divider-default-bottom-width 2)
;; do not open new frame for ediff, that would break
(setq ediff-window-setup-function #'ediff-setup-windows-plain)
(setq window-divider-default-right-width 2)
(window-divider-mode)
;; show the time in the modeline (also see the customization in the variables)
(display-time-mode)
;; Make buffer name more meaningful
(add-hook 'exwm-update-class-hook

(lambda ()
(exwm-workspace-rename-buffer exwm-class-name)))

;; disable CTRL-z (pause), because it breaks my workflows and exwm
(global-unset-key (kbd "C-z")))

;;; Start pinentry, so passwords for ssh and gnupg use Emacs mechanisms
(use-package pinentry

:ensure t
:config
(pinentry-start))

;;; Setup type-break mode such that it does not block EXWM
(use-package type-break

:custom
(type-break-demo-boring-stats t)
(type-break-mode-line-message-mode t)
:config
;; ignore errors for type-break mode. A missing type-break stats
;; file can break startup otherwise.
(ignore-errors (type-break-mode t))
;; the regular y-or-n-p or yes-or-no-p break exwm when in an X11 window.
(add-hook 'exmw-init

2/20

https://github.com/ch11ng/exwm

(lambda ()
(setq type-break-query-function

(lambda (msg)
(ding)
(alert msg

:severity 'high
:title "M-x type-break"
:icon "warning"))))))

I currently start my session as normal in Gnome Shell (to get all the monitor setup and
tweaks), then start Emacs and just run

M-x exwm-init

(answer yes: replace existing window manager)

To be able to switch back, you can get the current window manager with

wmctrl -m
in guix you can install and run it in one step:
guix shell wmctrl -- wmctrl -m

Simple EXWM setup for two screens

The tutorials I found to setup EXWM for two screens are much too complex.

In addition to the changes above, you just need exwm-randr.

I have two screens: HDMI-1, the primary screen, and DP-1, the secondary that is
somewhat smaller than the primary.

Use arandr to find the correct position for the secondary screen. For me it is 1920x120:
The width of the primary screen and the difference in height (resolution) between both.

Setup (needs Initialize use-package):

;; Enable exwm-randr before exwm-init gets called
(use-package exwm-randr

;; :if dw/exwm-enabled
:after (exwm)
:custom
;; two workspaces
(exwm-workspace-number 2)
;; move the second workspace to the secondary monitor,
;; the others are on the primary display
(exwm-randr-workspace-monitor-plist '(1 "DP-1"))
;; enable switching to any buffer from any workspace

3/20

(exwm-workspace-show-all-buffers t)
(exwm-layout-show-all-buffers t)
:config
(exwm-randr-enable)
;; update the screen setup when a screen is turned on or off
(add-hook 'exwm-randr-screen-change-hook

(lambda ()
(start-process-shell-command
"xrandr" nil

"xrandr --output HDMI-3 --primary --auto --pos 0x0 --output DP-1 --auto --pos 1920x120"))))

Controlling pulseaudio from EXWM

I need mouse-controlled volume. The desktop-environment package provides it, but out
of the box only for amixer. I adjusted it for pulseaudio.

Also I added the volume to the modline, with scrollwheel control: Scroll up or down to
increase or decrease volume.

Setup (needs Initialize use-package):

(use-package desktop-environment :ensure t
:custom
(desktop-environment-screenshot-directory "~/Bilder")
(desktop-environment-volume-normal-decrement "-5%")
(desktop-environment-volume-normal-increment "+5%")
(desktop-environment-volume-get-command
"LC_ALL=C pacmd list-sinks|grep -A 15 '* index'| awk '/volume: front/{ print $5 }' | sed 's/,//g'")

(desktop-environment-volume-set-command
;; auto-detect the active sink.
"LC_ALL=C pactl set-sink-volume $(pacmd list-sinks|grep -o '* index.*' | grep -o ':.*' | cut -c 2-) %s")

(desktop-environment-volume-small-decrement "-1%")
(desktop-environment-volume-small-increment "+1%")
:config
(desktop-environment-mode)
;; the sigma and pi commands are optimized for https://www.neo-layout.org/
(global-set-key (kbd "M-σ") 'desktop-environment-volume-decrement-slowly)
(global-set-key (kbd "M-π") 'desktop-environment-volume-increment-slowly)
(global-set-key (kbd "M--") 'desktop-environment-volume-decrement)
(global-set-key (kbd "M-+") 'desktop-environment-volume-increment))

(define-minor-mode display-volume-mode
"Toggle display of volume in mode lines.

4/20

Depends on desktop-environment.

When Display Time mode is enabled, it queries the volume from
your system on every displaying using
desktop-environment-volume-get (which you can customize)."

:global t :group 'desktop-environment
(or global-mode-string (setq global-mode-string '("")))
(setq display-volume-keymap (make-sparse-keymap))
(define-key display-volume-keymap (kbd "<mode-line> <mouse-4>")
'desktop-environment-volume-increment-slowly)

(define-key display-volume-keymap (kbd "<mode-line> <mouse-5>")
'desktop-environment-volume-decrement-slowly)

(setq display-volume-modeline-entry
'(:eval (propertize (format " V:%s%% "(desktop-environment-volume-get))

'keymap display-volume-keymap)))
(if display-volume-mode

(progn
(or (memq display-volume-modeline-entry global-mode-string)

(setq global-mode-string
(append global-mode-string (list display-volume-modeline-entry)))))))

(display-volume-mode)

elfeed and emms: listen to podcast with convenience

Elfeed enables the nicest podcast integration I know: Treat podcast entries as regular
RSS entries, but hit A to enqueue them in emms.

Usage:

• Prepare emms with M-x emms-playlist-mode-go

• Update your feeds with M-x elfeed-update

• Read your feeds with M-x elfeed; hit enter to open an entry, then n and p to
switch between them quickly (that’s the speed I wish to have everywhere).

• Hit A to enqueue the file in emms.

• Start listening to media with M-x emms-start.

• Keep queueing up further interesting entries from elfeed.

• Do something else while listening :-)

• Pause emms with M-x emms-pause when needed.

5/20

https://github.com/skeeto/elfeed
https://www.gnu.org/software/emms/

• Setup (needs Initialize use-package)

(use-package elfeed :ensure t)
(elfeed-add-feed "https://www.deutschlandfunk.de/informationen-am-morgen-102.xml")
(require 'emms-setup)
(emms-all)
(emms-default-players)
(setq emms-source-file-default-directory "/path/to/your/media/files/")

[2022-02-25 Fr]

Save the frame configuration to a register

With C-x r f LETTER (frame-configuration-to-register) and C-x r j LETTER
(jump-to-register) you can store and restore the the exact layout of buffers in Emacs.

When you use exwm that’s almost a super-power, because you can prepare several exact
window setups for different tasks, but it is also useful in regular emacs usage

This is similar to switching between perspectives in Eclipse, but if you use exwm, this
encompasses all programs.

Use the regular window splitting in Emacs (C-x 2 for each vertical split, C-x 3 for
each horizontal split), then hit C-x r f LETTER to store the exact setup in the letter
LETTER. Then hack away, move around, split and unify buffers, whatever you need.
Then hit C-x r j LETTER to restore the saved setup, down to the positions of the cursors
in all the files.

When I have the files in front of me that I need right now and a colleague asks me
something, C-x r f a stores the window, C-x 1 switches to single-window layout
and we look together. When we’re done, C-x r j a restores my context and I
continue hacking.

I have not used more than 3 frame-configurations at the same time yet, but even like
that this has already been a huge asset.

Aside: You can also use the registers to store content, position in the file, and even the
position of all Emacs windows. For details see https://www.emacswiki.org/emacs/
Registers

[2022-06-18 Sa]

6/20

https://www.emacswiki.org/emacs/Registers
https://www.emacswiki.org/emacs/Registers

select pgp key to use for mu4e

If recipients cannot decrypt your emails, check the Mml Secure Key Preferences:

M-x customize-variable mml-secure-key-preferences

There you can add their key.

[2022-07-21 Do]

make-window-dedicated: prevent replacing of buffers

When you use commands that open new buffers or can split windows — or if emms
opens videos in exwm buffers — it is annoying when emacs replaces some content you
always want to see. To fix that, you can use make-window-dedicated:

(defun make-window-dedicated (arg)
"Set the current window as dedicated,

so it will not be chosen as target for other buffers.
With C-u (ARG != 1; some prefix argument)
set window as non-dedicated."

(interactive "p")
(set-window-dedicated-p nil (if (= 1 arg) t nil)))

Usage:

• Enter the window with the buffer you want to keep visible.

• M-x make-window-dedicated to prevent replacing the buffer.

• C-u M-x make-window-dedicated in a dedicated window to make it non-dedicated.

[2022-08-18 Do]

Create simple packages (tutorial)

Here’s a complete and quick to read description for creating and submitting your own
Emacs packages. It covers the whole process and shows how to customize the compilation
mode:

https://spin.atomicobject.com/2016/05/27/write-emacs-package/

7/20

https://spin.atomicobject.com/2016/05/27/write-emacs-package/

LSP and DAP mode (language server and debug
adapter)

With language servers and debug adapters, Emacs can be used for languages that require
complex IDE support to work efficiently.

See https://emacs-lsp.github.io/dap-mode/page/configuration/
and https://github.com/emacs-lsp/dap-mode

For Java this does not scale to the source repository at work, but for Typescript it is
good enough.

For Javascript js2-mode is better.

[2022-10-02 So]

Use ido everywhere, except in specific functions

Ido is great to select existing entries, with ido-cr+ even more so, but if I want
to create a new one, or just want the last matching folder, it can be annoying.
To precisely disable ido (and ido-cr+) there, use M-x customize-variable to change
ido-read-file-name-non-ido and ido-cr+-disable-list. I do that in my ido-
preview setup:

Setup (needs Initialize use-package):

(use-package ido-completing-read+ :ensure t :defer 1
:config
;; disable ido-cr+ where it does not fit.
(add-to-list 'ido-cr+-disable-list 'journal t)
(add-to-list 'ido-cr+-disable-list 'gnus-mime-save-part t)
(add-to-list 'ido-cr+-disable-list 'bbdb-read-string)
:custom
(ido-cr+-auto-update-blacklist t)
(ido-cr+-function-whitelist nil)
(ido-cr+-max-items 30000)
(ido-cr+-replace-completely nil)
(ido-ubiquitous-mode t))

(use-package ido-preview ;; no need to ensure: it is part of emacs
:defer 2
:config
(add-hook 'ido-setup-hook

(lambda()
(define-key ido-completion-map (kbd "C-M-p") (lookup-key ido-completion-map (kbd "C-p")))

8/20

https://emacs-lsp.github.io/dap-mode/page/configuration/
https://github.com/emacs-lsp/dap-mode
emacs-javascript.org
https://github.com/DarwinAwardWinner/ido-completing-read-plus

(define-key ido-completion-map (kbd "C-M-n") (lookup-key ido-completion-map (kbd "C-n"))) ; currently, this makes nothing. Maybe they'll make C-n key lately.
(define-key ido-completion-map (kbd "C-p") 'ido-preview-backward)
(define-key ido-completion-map (kbd "C-n") 'ido-preview-forward)))

;; disable ido where it does not fit.
(add-to-list 'ido-read-file-name-non-ido 'journal t)
(add-to-list 'ido-read-file-name-non-ido 'gnus-mime-save-part t)
:custom
(ido-all-frames t)
(ido-buffer-disable-smart-matches nil)
(ido-enable-dot-prefix t)
(ido-enable-flex-matching t)
(ido-everywhere t)
(ido-max-work-file-list 10)
(ido-max-dir-file-cache 20)
;; reduce number of prospects to reduce window size changes
(ido-max-prospects 10)
(ido-mode (quote both) nil (ido))
(ido-read-file-name-non-ido
'(tramp-rename-these-files tramp-rename-files

journal gnus-mime-save-part))
(ido-use-filename-at-point (quote guess))
(ido-use-url-at-point t))

;; Ignore ido save errors; they can block emacs shutdown on disk-full,
;; and the history is not important enough for that.
(defun ido-kill-emacs-hook ()

(ignore-errors (ido-save-history)))

;; my disable list for ido-cr+:
;; (ido-cr+-disable-list
;; '(read-file-name-internal read-buffer
;; internal-complete-buffer todo-add-category
;; gnus-emacs-completing-read gnus-iswitchb-completing-read
;; grep-read-files magit-builtin-completing-read ess-completing-read
;; Info-read-node-name tmm-prompt org-tags-completion-function
;; ffap-read-file-or-url ffap-read-file-or-url-internal
;; sly-read-symbol-name org-olpath-completing-read bbdb-read-string
;; journal gnus-mime-save-part)

[2022-10-27 Do]

9/20

type-break with image-slideshow from workrave using
slideview

Show workrave exercises during typing breaks. Requires workrave installed. This replaces
workrave in exwm for me, because workrave tends to lock up the screen (I do not know
why).

Setup (needs Initialize use-package):

;; add demo images to type-break
(use-package slideview :ensure t

:config
(add-hook 'image-mode-hook 'slideview-mode)
(defun type-break-demo-slideview ()

"Take a typing break with a training slideshow."
(and (get-buffer "*Slideview*")

(kill-buffer "*Slideview*"))
(condition-case ()

(progn
(with-temp-buffer

(rename-buffer "*Slideview*")
(let* ((files (directory-files

"~/.guix-profile/share/workrave/exercises/" t))
(len-files (length files))
;; compensate that random selection of a range
;; start favors later entries.
(compensate 5)
(random-exercise-index (- (random len-files) compensate))
(starting-exercise-index
(if (< random-exercise-index compensate)

(random (min compensate len-files))
random-exercise-index))

(excercise (nth starting-exercise-index files)))
(find-file excercise))

(let ((timer (run-with-timer 30 10 'slideview-next-file)))
;; Wait for user to come back.
(read-event)
(type-break-catch-up-event)
(cancel-timer timer)))

(kill-buffer "*Slideview*"))
(quit
(read-event)
(type-break-catch-up-event)
(and (get-buffer "*Slideview*")

10/20

https://www.workrave.org

(kill-buffer "*Slideview*")))))
(add-to-list 'type-break-demo-functions 'type-break-demo-slideview)
)

[2022-12-12 Mo]

find-current-as-root

THIS IS BROKEN FOR ME AT THE MOMENT! (2024)
Error: tramp-get-ls-command: Couldn’t find a proper ‘ls’ command

I often find myself needing to edit a file in /etc/.

To avoid having to remember the tramp syntax for this, I have the command M-x
find-current-as-root. This simply re-opens the current file in the current buffer with
root permissions.

To get it, just add the following to your ~/.emacs.d/init.el or ~/.emacs:

;;; Open files as root - quickly
(defcustom find-file-root-prefix "/sudoedit::"
"Tramp root prefix to use.")

(defun find-file-as-root ()
"Like `ido-find-file, but automatically edit the file with

root-privileges (using tramp/sudo), if the file is not writable by
user."

(interactive)
(let ((file (ido-read-file-name "Edit as root: ")))

(unless (file-writable-p file)
(setq file (concat find-file-root-prefix file)))

(find-file file)))
;; or some other keybinding...
;; (global-set-key (kbd "C-x F") 'djcb-find-file-as-root)

(defun find-current-as-root ()
"Reopen current file as root"
(interactive)
(set-visited-file-name (concat find-file-root-prefix (buffer-file-name)))
(setq buffer-read-only nil))

[2022-12-15 Do]

11/20

see complete changes with M-x
diff-hl-set-reference-rev

When you’re working on a patch series you may want to see not just the lines changed
compared to the last commit, but the change by your patch series. You can do that in
by selecting the last commit before your changes as reference revision:

M-x diff-hl-mode
M-x diff-hl-set-reference-rev RET <revision>

Now your buffers fringes will highlight added, removed and changed lines compared to
this reference revision.

That can come in very handy when you’re creating atomic commits.

Or when you step back into a project after a 2 years break to finish a pull-request.

[2023-01-17 Di]

Org-Agenda with desktop notifications and Outlook
calendar ics

This is my emacs OWA calendar setup. Replace example.com and SECRET by the right
values.

Setup (needs Initialize use-package):

(use-package org-agenda
:defer 6
:custom
(org-agenda-diary-file "~/.emacs.d/diaries/calexport")
(calendar-mark-diary-entries-flag t)
(calendar-view-diary-initially-flag t)
(alert-default-style 'libnotify)
(appt-disp-window-function 'alert-for-appt)
(org-agenda-include-diary t)
(appt-delete-window-function (lambda ()))
(org-agenda-clock-consistency-checks
(quote
(:max-duration "12:00" :min-duration 0 :max-gap "0:05" :gap-ok-around

("4:00" "12:00")
:default-face
((:background "DarkRed")
(:foreground "white"))

:overlap-face nil :gap-face nil :no-end-time-face nil :long-face nil :short-face nil)))

12/20

(org-agenda-clockreport-parameter-plist (quote (:link t :maxlevel 2 :properties ("Effort"))))
(org-agenda-start-with-clockreport-mode nil)
:config
;; Rebuild the reminders everytime the agenda is displayed
(add-hook 'org-agenda-finalize-hook (lambda () (org-agenda-to-appt t)))
;; Run once when Emacs starts
(org-agenda-to-appt t)
;; Activate appointments so we get notifications
(appt-activate t)
;; Add calendar, option 3 https://www.ict4g.net/adolfo/notes/emacs/emacs-caldav.html
(setq diary-location "~/.emacs.d/diaries/")
(add-hook 'diary-list-entries-hook 'diary-include-other-diary-files)
(add-hook 'diary-mark-entries-hook 'diary-mark-included-diary-files)
(setq calendars

'(("calexport" . "https://example.com/owa/SECRET@example.com/SECRET/calendar.ics")))
(defun getcal (url file)

"Download ics file and add it to file"
(let ((tmpfile (url-file-local-copy url)))

(icalendar-import-file tmpfile file)
(kill-buffer (car (last (split-string tmpfile "/"))))))

(defun getcals ()
"Load a set of ICS calendars into Emacs diary files"
(interactive)
(save-mark-and-excursion

(save-window-excursion
(with-silent-modifications

(mapcar #'(lambda (x)
(let ((file (concat diary-location (car x)))

(url (cdr x)))
(message (concat "Loading " url " into " file))
(find-file file)
;; (flush-lines "^[&]") ;; if you import ical as non marking
(erase-buffer) ;; to avoid duplicating events
(getcal url file)))

calendars)))))
(defun appt-reparse-diary-file ()

"force reparsing the diary file"
(appt-check t))

(add-to-list 'midnight-hook 'getcals)
(add-to-list 'midnight-hook 'appt-reparse-diary-file))

[2023-01-17 Di]

13/20

Reduce overhead over ssh X11 forwarding

Popping up dialogs is pretty disturbing when working over SSH X11 forwarding. This
disables the dialog boxes and keeps everything within the Emacs frame.

(setq use-dialog-box nil
use-system-tooltips nil)

[2024-06-20 Do]

VC-mode enables partial commits for every version
tracking system (Git, Mercurial, . . .)

Just open the directory with vc mode, get the diff, adjust the diff, and commit from
there.

C-x v d RETURN
= (to show the complete diff)
k on the hunk header to remove the hunk (one part of the diff)
C-c C-s to split a hunk (you can then delete parts)
C-x v v to commit the cleaned diff

To undo a change, just reverse the diff with C-c C-r and then apply the respective
reversed hunk with C-c C-a.

Aside: monky provides a magit-inspired Mercurial-interface, but with fewer options than
magit itself. It may be a good match if you want to stage files for commit instead of
removing hunks you don’t want to commit (as is done with vc-mode).

[2024-07-19 Fr]

Minimal face adjustments

These are the changes to the default faces that I really need:

(custom-set-faces
;; show VCS additions more strongly.
'(diff-hl-insert ((t (:inherit diff-added

:background "#ccffcc"
:foreground "green4"))))

;; show the active window with color, because I
;; always had to look twice to search the focus.
'(mode-line ((t (:background "light goldenrod"

:foreground "black"
:box (:line-width (1 . -1)

14/20

https://www.gnu.org/software/emacs/manual/html_node/emacs/Version-Control.html
https://ananthakumaran.in/monky/index.html

:style released-button)))))
;; show org-mode block start and end more strongly.
'(org-block-begin-line ((t (:inherit org-meta-line

:background "wheat"))))
'(org-block-end-line ((t (:inherit org-meta-line

:background "wheat"))))
;; highlight the region more strongly.
'(region ((t (:extend t :background "cornsilk")))))

[2024-10-11 Fr]

xref/dumb-jump setup for typescript: mouse and
keyboard

Emacs dumb jump with ripgrep integration provides faster jump-to-definition than lsp
(language server) solutions and needs no caching that could go stale (looking at you,
IntelliJ).

What I want is the single shortcut C-M-g for jump-to-definition when I’m on a reference
and jump-to-references when I’m on a definition.

Also I want a CTRL-click mouse action to jump to the definition or references.

This snippet sets up both, as well as C-M-p for jumping backwards.

Setup (needs Initialize use-package):

(use-package dumb-jump :ensure t :defer 10
:custom
(dumb-jump-rg-search-args '())
:config
(require 'xref)
;; Only use completing-read if you use vertical completion. I use ido, so I do not use it.
;; (setq xref-show-definitions-function #'xref-show-definitions-completing-read
;; xref-show-xrefs-function #'xref-show-definitions-completing-read)
(defun find-definition-or-references ()

(interactive)
(let ((buffer-and-point (cons (buffer-name) (point)))

(xref-prompt-for-identifier nil))
(condition-case nil

(call-interactively 'xref-find-definitions)
(error
(when (equal buffer-and-point (cons (buffer-name (window-buffer)) (point)))

(call-interactively 'xref-find-references))))))
;; add proper typescript handling

15/20

https://github.com/jacktasia/dumb-jump

;; thanks to https://github.com/amake/.emacs.d/commit/c4307e9605b71d2e603fde9ca4354cd60fac359f#diff-82c647c7e6a8e02d1b94a30268eb483ff5aadf926762a759fcd0f4c5850356bf
(nconc dumb-jump-language-file-exts

'((:language "typescript" :ext "ts" :agtype "ts" :rgtype nil)
(:language "typescript" :ext "tsx" :agtype "ts" :rgtype "ts")))

(nconc dumb-jump-language-comments
'((:comment "//" :language "typescript")))

(nconc dumb-jump-find-rules
;; Rules translated from link below, except where noted
;; https://github.com/jacktasia/dumb-jump/issues/97#issuecomment-346441412
'((:type "type" :supports ("ag" "grep" "rg" "git-grep") :language "typescript"

:regex "(export\\s+(abstract\\s+)?)?class\\s+JJJ\\b"
:tests ("class test" "export class test" "abstract class test"

"export abstract class test")
:not ("class testnot"))

(:type "module" :supports ("ag" "grep" "rg" "git-grep") :language "typescript"
:regex "(declare\\s+)?namespace\\s+JJJ\\b"
:tests ("declare namespace test" "namespace test")
:not ("declare testnot"))

(:type "module" :supports ("ag" "grep" "rg" "git-grep") :language "typescript"
:regex "(export\\s+)?module\\s+JJJ\\b"
:tests ("export module test" "module test")
:not ("module testnot"))

(:type "function" :supports ("ag" "grep" "rg" "git-grep") :language "typescript"
:regex "(export\\s+)?(async\\s+)?function\\s+JJJ\\b"
:tests ("function test" "export function test" "export async function test"

"async function test")
:not ("function testnot"))

(:type "variable" :supports ("ag" "grep" "rg" "git-grep") :language "typescript"
:regex "export\\s+(var|let|const)\\s+JJJ\\b"
:tests ("export var test" "let test" "const test")
:not ("var testnot"))

(:type "variable" :supports ("ag" "grep" "rg" "git-grep") :language "typescript"
:regex "(var|let|const)\\s+JJJ\\s*=\\s*function\\s**?\\s*\\\(\\\)"
:tests ("var test = function ()" "let test = function()" "const test=function*()")
:not ("var testnot = function ()"))

(:type "variable" :supports ("ag" "grep" "rg" "git-grep") :language "typescript"
:regex "(export\\s+)?(public|protected|private)\\s+(static\\s+)?(abstract\\s+)?(((get|set)\\s+)|(async\\s+))?JJJ\\b"
:tests ("public test" "protected static test" "private abstract get test"

"export public static set test" "export protected abstract async test")
:not ("public testnot"))

(:type "type" :supports ("ag" "grep" "rg" "git-grep") :language "typescript"
:regex "(export\\s+)?interface\\s+JJJ\\b"
:tests ("interface test" "export interface test")
:not ("interface testnot"))

16/20

(:type "type" :supports ("ag" "grep" "rg" "git-grep") :language "typescript"
:regex "(export\\s+)?type\\s+JJJ\\b"
:tests ("type test" "export type test")
:not ("type testnot"))

(:type "enum" :supports ("ag" "grep" "rg" "git-grep") :language "typescript"
:regex "(export\\s+)?enum\\s+JJJ\\b"
:tests ("enum test" "export enum test")
:not ("enum testnot"))))

;; Custom definition for public methods without "public" keyword.
;; Fragile! Requires brace on same line.
;; (:type "function" :supports ("ag" "grep" "rg" "git-grep") :language "typescript"
;; :regex "\\bJJJ\\s*\\(.*\\{"
;; :tests ("test() {" "test(foo: bar) {")
;; :not ("testnot() {"))))

;; understand types (this is non-standard for dumb-jump, but seems to work)
(add-to-list 'dumb-jump-language-contexts '(:type "type" :language "typescript"

:left ": " :right ";\\|\)\\|,"))
(add-to-list 'dumb-jump-language-contexts '(:type "type" :language "typescript"

:left "(type =|interface)"))
;; use dumb-jump as xref-searcher (no setup and fast)
(add-hook 'xref-backend-functions #'dumb-jump-xref-activate)
;; use C-M-g as shortcut
(define-key global-map (kbd "C-M-g") 'find-definition-or-references)
(define-key dumb-jump-mode-map (kbd "C-M-g") 'find-definition-or-references)
(define-key global-map (kbd "C-M-p") 'xref-pop-marker-stack)
;; setup CTRL-left click handling
(defun jump-to-mouse-position (event &optional promote-to-region)

(interactive "e\np")
(mouse-set-point event promote-to-region)
(find-definition-or-references))

(global-unset-key [C-down-mouse-1])
(define-key global-map [C-mouse-1] 'jump-to-mouse-position))

[2024-11-08 Fr]

Browse Unicode Letters

You can browse the letters in the lower unicode planes (nicer than with a unicode list
online) by simply calling M-x describe-char for a letter and then clicking on the code
point in charset link.

If you for example have the pointer on the letter (warning sign) and you use M-x
describe-char, then you see something like

17/20

position: 33357 of 33966 (98%), restriction: <33037-33967>, column: 51
character: (displayed as) (codepoint 9888, #o23240, #x26a0)

charset: unicode-bmp (Unicode Basic Multilingual Plane (U+0000..U+FFFF))
code point in charset: 0x26A0

script: symbol
syntax: w which means: word

category: .:Base
to input: type "C-x 8 RET 26a0" or "C-x 8 RET WARNING SIGN"

Click on the code point in charset: 26A0 and it shows the Unicode characters from
0000 to FFFF.

For example:

0 1 2 3 4 5 6 7 8 9 A B C D E F
260x
261x
262x
263x
264x
265x
266x ♪
267x
268x
269x
26Ax
26Bx
26Cx
26Dx
26Ex
26Fx

(but aligned as table)

Aside: you can insert any letter by name using M-x insert-char.

[2025-03-29 Sa]

Simple Python Setup with eglot/lsp

Setupp Emacs for Python development with eglot and file completion with ideo. Requires
ripgrep and pylsp or similar installed.

Use C-c p f to select files in the repository and C-c p s to search in repositroy files.

Open the project files sidebar with C-x C-n to see other files.

18/20

Setup (needs Initialize use-package):

;; setup in ~/.emacs.d/init.el
(use-package flycheck-eglot :defer 30 :ensure t)
(use-package flycheck-pycheckers :defer 30 :ensure t)
(use-package flycheck-mypy :defer 30 :ensure t)
(use-package pyvenv :defer 30 :ensure t)
(use-package pyvenv-auto :defer 31 :ensure t)

;; lsp setup
(use-package eglot

:defer 30
:ensure t
:hook ((python-mode . eglot-ensure) ;; start eglot for python

(python-mode . flyspell-prog-mode) ;; spell checking
(python-mode . hs-minor-mode) ;; collapse code
(python-mode . flycheck-mode) ;; linter
;; tree-sitter version
(python-ts-mode . eglot-ensure)
(python-ts-mode . flyspell-prog-mode)
(python-ts-mode . hs-minor-mode)
(python-ts-mode . flycheck-mode)))

;; setup with use-package in ~/.emacs.d/init.el
;; sidebar
(use-package dired-sidebar

:bind (("C-x C-n" . dired-sidebar-toggle-sidebar))
:ensure t
:defer 30
:commands (dired-sidebar-toggle-sidebar)
:custom
(dired-sidebar-subtree-line-prefix "__")
(dired-sidebar-theme 'vscode)
(dired-sidebar-width 40) ;; for Python
(dired-sidebar-use-term-integration t)
:init
(add-hook 'dired-sidebar-mode-hook

(lambda ()
(unless (file-remote-p default-directory)

(auto-revert-mode))))
:config
(push 'toggle-window-split dired-sidebar-toggle-hidden-commands)
(push 'rotate-windows dired-sidebar-toggle-hidden-commands))

19/20

;; open files in the project
(use-package projectile :ensure t :defer 1

:config
(projectile-mode)
(define-key projectile-mode-map (kbd "C-c p") 'projectile-command-map)
(define-key projectile-command-map (kbd "s") 'projectile-ripgrep)
(define-key projectile-command-map (kbd "f") 'projectile-find-file)
(add-to-list 'project-find-functions

(lambda (x) (cons 'transient (projectile-project-root x))))
:custom
(projectile-switch-project-action 'projectile-find-file)
;; hide output from too long lines
(ripgrep-arguments '("-M 256")))

(use-package ido
:config
(ido-mode 1))

[2025-04-03 Do]

20/20

